If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-60x+16=0
a = 1; b = -60; c = +16;
Δ = b2-4ac
Δ = -602-4·1·16
Δ = 3536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3536}=\sqrt{16*221}=\sqrt{16}*\sqrt{221}=4\sqrt{221}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-4\sqrt{221}}{2*1}=\frac{60-4\sqrt{221}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+4\sqrt{221}}{2*1}=\frac{60+4\sqrt{221}}{2} $
| -8/3m+1/2(10/3m+1)=7/6(-17/5m+1/2) | | (5y-10)+y=8 | | y^2-13y+8=-4 | | 7(c-4)=-42 | | 2.68d+13=1.02d-6.1 | | 19x=10x+54 | | 5s-14=33s | | 8=(9y) | | 125m-75m+38.200=40.000-150m | | 0.3n=0.8+0.7n | | 8x+2(x-7)=20 | | X/y=150 | | 6x+29=7x+25 | | -3k+108=0 | | 400*(1.08)^(x)=1000 | | 12m(m-2)=0 | | 2x=20.x= | | -2(x=4)=7(x=4) | | 5x-15=5x+3 | | 8y-48(1)=-16 | | 8y-48(0)=-16 | | 8y-48(-1)=-16 | | 8y-48(-2)=-16 | | 28=-3(21-x)+2(x-2) | | 11=x+4/x | | 2(p-5)+8=20 | | 60x^2+38.4x+5.76=0 | | 2b=14/3 | | (2x+31)(7x-24)=180 | | 0.5x-35=14 | | 5x^2+8x=12 | | 10(g*5)=2(g+9) |